domenica 11 febbraio 2024

Trofeo della Logica Apuana - 05 Battaglia Navale

Battaglia Navale era il quinto schema del Trofeo della Logica Apuana, e uno dei più difficili: solo cinque squadre hanno provato a risolverlo, e solo una c'è riuscita!

Qui trovi le regole.

Flotta: 

(Se non vedi la nave nell'immagine sopra o nelle seguenti, prova a ricaricare la pagina)

La prima cosa da fare quando si prova a risolvere uno schema di Battaglia Navale è segnare con una X tutte le caselle in una riga o colonna con uno 0 (in questo schema non ce ne sono), e le caselle vicine ad un pezzo di nave già inserito, poiché due navi non possono toccarsi tra di loro.

Segniamo con un rombo le caselle in cui sappiamo che dovrà esserci una nave (in questo caso, perché il pezzo di nave data deve continuare verso il basso) ma non sappiamo che forma abbia (in questo caso, potrebbe essere lunga 2, 3 o 4).

Guardiamo ora la prima colonna: ha solo sette caselle vuote, e ben sei devono contenere una nave!

Proviamo a vedere se la prima casella in alto può essere vuota: in tal caso la colonna sarebbe formata da due navi da 3:

Se ora disegnassimo tutte le X corrispondenti, ci accorgeremmo che occupano l'intera seconda colonna, in cui però deve trovarsi una nave.

Allora la prima casella della prima colonna non può essere vuota, e possiamo quindi disegnarci una nave. Allo stesso modo possiamo escludere altre tre caselle dall'essere vuote:

Ricordiamoci che due navi non possono toccarsi nemmeno in diagonale: questo ci consente di mettere un po' di X. Inoltre nella prima riga ci deve essere solo una nave, quindi tutto il resto deve essere vuoto.

Guardiamo ora la quarta colonna, quella con un 5: abbiamo ancora solo sei caselle da decidere. Se supponiamo che la prima in alto sia vuota, abbiamo un problema con la colonna del 2 a sinistra, proprio come prima facevamo con le prime due colonne. In modo simile possiamo escludere altre tre caselle dall'essere vuote:

Mettiamo le X in diagonale alle navi, e nella sesta riga, quella del 2, che è piena.

Notiamo che questo ci consente di concludere la nave che avevamo a metà.

Ora la colonna del 5 ha sicuramente una nave da 3 e due navi singole (che però potrebbero continuare in orizzontale!). La domanda è: la nave da 3 si trova sopra o sotto?

Se fosse sopra, la colonna del 2 non potrebbe essere completata. Quindi deve essere sotto. Mentre le due navi del 2 devono essere sopra.

Ora la riga del 4 è finita. Possiamo concludere la nave da 2 e mettere alcune X in giro:

Mettiamo una nave nell'ultima casella rimasta della seconda colonna. Possiamo poi concludere la prima colonna.

Notiamo che abbiamo già inserito tutte e tre le navi da 2, e anche quella da 4. Allora la nave nella seconda riga non può che essere una nave da 3.

Ora ci mancano solo da inserire tre navi da 1. Nella penultima riga dobbiamo metterne due, e l'ultima andrà nella seconda riga per completare l'ultima colonna.

venerdì 2 febbraio 2024

Trofeo della Logica Apuana - 02 Fillomino

Fillomino era il secondo schema del Trofeo della Logica Apuana, e solo nove squadre sono riuscite a risolverlo in gara.

Qui trovi le regole.

Cominciamo con il disegnare i bordi tra caselle con numeri diversi, e quelli intorno agli 1.

Ora, la prima cosa che notiamo è che ci sono due 2 in diagonale nella parte sinistra dello schema. Non possono toccarsi, altrimenti avremmo una regione di almeno tre caselle, quindi il 2 a sinistra deve necessariamente continuare verso l'altro. Non possiamo invece concludere il 2 a destra, ma possiamo mettere due bordi.

Passiamo ora al 4 nell'angolo in alto a destra: deve continuare per forza verso sinistra. Ora abbiamo due coppie di 4: non possono toccarsi, altrimenti avremmo cinque caselle in questa regione. Disegnamo quindi i bordi.

Adesso la coppia di 4 in alto deve necessariamente continuare verso sinistra, e di nuovo non può scendere a toccare l'altra coppia di 4. Abbiamo così concluso una regione di 4.

Fino ad adesso abbiamo usato tecniche non troppo avanzate: se sapevi già giocare a Fillomino dovresti essere riuscito ad arrivare fin qui! Ora, invece, non è ovvio come continuare: quel 3 occuperà lo spazio verso destra? Oppure ci sarà un 2? Quei tre 4 si uniranno, o formeranno due regioni diverse? (in realtà, a quest'ultima domanda dovresti saper rispondere)

Il trucco è contare le caselle che rimangono (escludendo solo quelle di una regione completata): sono 34 bianche + una contenente un 3 + tre contenenti dei 4 + una contenente un 12 + una contenente un 20 + una contenente un 2; in totale 34+1+3+1+1+1= 41 caselle rimaste. Oppure saremmo potuti andare per esclusione: 7 x 7 caselle totali - quattro occupate dai 4 - due occupate dai 2 - due occupate dagli 1; quindi 49-4-2-2= 41 caselle rimaste.

Cosa dobbiamo ancora inserire? Almeno una regione da 3, una da 4 (potrebbero essere due, o anche più, ma quello che sappiamo finora è che ce ne sia almeno una), una da 12, una da 20 e una da 2; in totale 41 ! Quindi non rimane posto per nient'altro!

Questo significa che dobbiamo riempire tutto lo schema solo con queste regioni. Ad esempio, i 4 devono unirsi insieme. Possono farlo in due modi, ma uno di questi non va bene perché lascerebbe un buco di fianco all'1.

Le due caselle alla destra del 3 possono essere raggiunte solo da lui (e non possono formare una nuova regione).

Cosa può fare quel 2? Se va verso il basso, tutte le caselle nell'angolo in basso a sinistra rimangono isolate e non possono essere raggiunte né dal 12, né dal 20. Il 2 deve quindi andare verso destra.

Ora basta contare le caselle per capire che il 12 le ha già tutte in alto e non deve scendere, e lo schema è finito!

giovedì 1 febbraio 2024

Trofeo della Logica Apuana - 01 Salvalamucca

Salvalamucca era il primo schema del Trofeo della Logica Apuana, nonché quello risolto correttamente dal maggior numero di squadre.

Regole:

Dividi lo schema in recinti quadrati di varie dimensioni seguendo la quadrettatura, in modo tale che ogni recinto contenga esattamente una mucca.


Come risolverlo?

Innanzitutto notiamo che ci sono un po' di mucche che devono stare per forza in un recinto di lato 1, perché non hanno molto spazio intorno a loro.


La strategia per risolvere Salvalamucca è di guardare gli angoli (sia quelli dello schema, sia quelli che si formano tra due recinti già tracciati!). 

Ad esempio, guardiamo l'angolo in alto a sinistra: deve appartenere ad un recinto, quindi dovrà essere nello stesso quadrato di una mucca. Ma quale mucca? Per scoprirlo immaginiamo un quadrato che parte piccolo piccolo in quell'angolo, e facciamolo espandere finché non trova una mucca:


Ripetiamo la stessa strategia su altri angoli:

Quindi otteniamo:


Hai capito come funziona questa strategia? Prova a risolvere questo schema:



Finora, tutte le volte che il nostro quadrato, espandendosi, trovava una mucca, poi doveva fermarsi, non poteva crescere più. 

Non è sempre così: a volte i quadrati potrebbero crescere ancora, e non sappiamo quando fermarci. Dobbiamo quindi lasciarli "in sospeso", e scopriremo più tardi quanto saranno davvero grandi. 

Guardiamo ad esempio la prossima animazione:


I quadrati blu e rosso potrebbero espandersi ancora, quindi li lasciamo in sospeso, mentre quello verde è finito. Il quadrato marrone parte da un angolo che si è creato sopra il quadrato verde (che è finito) e va a incontrare la stessa mucca del quadrato blu, quindi questi dovranno essere lo stesso quadrato (che dovrà avere lato tre!). Inoltre, adesso sappiamo che il quadrato rosso non può espandersi più di così. 


Concludiamo lo schema applicando la stessa strategia. 


Hai capito come funziona questa strategia? Prova a risolvere questo schema:




sabato 27 gennaio 2024

Trofeo della Logica Apuana

Oggi sabato 27 gennaio si è svolto alla Comasca il primo Trofeo della Logica Apuana, una gara a squadre di giochi logici rivolta alle scuole medie, organizzata dalla sede Salvetti dell'istituto Barsanti. 

47 squadre, per un totale di 184 partecipanti, si sono sfidate per il titolo.
Al primo posto la squadra "I GINI", con 2392 punti, che viene ammessa così alla finale dei Campionati Studenteschi di Giochi Logici. A seguire "I PRIME" con 1528, e a chiudere il podio "LoGiCA" con 1461 punti. 

Si ringraziano il comune di Massa, l’Associazione A.FA.P.H., Mosti Frutta, E.V.A.M. spa, Fratelli Bongiorni srl, F&B Ortofrutta srl, La Bottega della Carta, Gymnasium Club e GiocaGiò. 

Qui trovi la lista dei giochi, il testo (attenzione! Nelle regole di H2O manca il fatto che due ossigeni O non possono toccarsi, nemmeno diagonalmente) e le soluzioni della gara.

Ho pubblicato le spiegazioni passo passo di questi giochi: 
e ne aggiungerò altri (iscriviti per ricevere una mail quando succede). Tu quali vorresti vedere? 

lunedì 1 gennaio 2024

2024

2024 = 2³ ⨯ 11 ⨯ 23

quindi possiamo calcolare la somma dei suoi divisori:

1 + 2 + 4 + 8 + 11 + 22 + 44 + 88 + 23 + 46 + 92 + 184 + 253 + 506 + 1012 + 2024 =

= (1 + 2 + 4 + 8) ⨯ (1 + 11) ⨯ (1 + 23) =

= 15 ⨯ 12 ⨯ 24 = 4320

Non è un evento che capita spesso! L'ultimo anno con somma dei divisori 4320 è stato il 1938, anno in cui l'Italia vince il suo secondo mondiale di calcio ⚽. Ma per fortuna non dovremo aspettare molto per il prossimo: dopo il 2024, infatti, anche il 2030 avrà 4320 come somma dei suoi divisori.

Il 2024 sarà un anno stravagante😵, come lo erano il 2022 e il 2021, perché per scriverlo in fattori primi si usano cinque cifre, contro le quattro che servono normalmente.

Il 2024 non sarà un anno perfetto, ma sarà semiperfetto🥈: i numeri semiperfetti sono quelli che si possono scrivere come somma di alcuni dei suoi divisori. Ad esempio, se eliminiamo 88, 184 e 2024 dalla somma, otteniamo 1 + 2 + 4 + 8 + 11 + 22 + 44 + 23 + 46 + 92 + 253 + 506 + 1012 = 2024.

Il 2024 è un numero di Harshad (d'altra parte, lo erano anche il 2023, il 2022 e il 2020), ovvero la somma delle sue cifre (8) lo divide; il termine "Harshad" deriva dal sanscrito "harşa", che significa "grande gioia"😀.

Il 2024 sarà un anno apocalittico👿, perché la scrittura decimale di 2²⁰²⁴ contiene le cifre 666. Ma, come ho scritto nel 2021, gli anni apocalittici sono davvero tanti!

Il 2024 sarà un anno intoccabile🔥: cioè non esiste nessun intero che abbia come somma dei suoi divisori propri 2024.

Il 2024, inoltre, sarà un anno pratico🔨! Questo significa che tutti i numeri minori di 2024 possono essere scritti come somma di suoi divisori. Qualche esempio:

  • 1 = 1
  • 2 = 2
  • 3 = 2 + 1
  • 4 = 4
  • 5 = 4 + 1
  • 6 = 4 + 2
  • 7 = 4 + 2 + 1
  • 8 = 8
  • 9 = 8 + 1
  • ...
  • 1789 = 1012 + 506 + 253 + 13 + 4 + 1
  • 1790 = 1012 + 506 + 253 + 13 + 4 + 2
  • ...
  • 2022 = 1012 + 506 + 253 + 92 + 46 + 44 + 23 + 22 + 11 + 8 + 4 + 1
  • 2023 = 1012 + 506 + 253 + 92 + 46 + 44 + 23 + 22 + 11 + 8 + 4 + 2
2024 è anche il numero di braccialetti di 3 perline diversi che si possono fare se si hanno a disposizione 22 colori. Infatti:
  • se scegliamo tre perline tutte dello stesso colore, possiamo fare 22 braccialetti diversi: uno per ogni colore;
  • se scegliamo due perline dello stesso colore, e la terza di un colore diverso, possiamo fare 22 ⨯ 21 = 462 braccialetti;
  • se scegliamo tre perline di tre colori diversi, possiamo fare 22 ⨯ 21 ⨯ 20 / 6 = 1540 braccialetti.
Quindi in tutto possiamo fare 22 + 462 + 1540 = 2024 braccialetti diversi.

Inoltre 2024 :
  • è 11111101000 in binario,
  • è 3750 in ottale,
  • è 7E8 in esadecimale,
  • è MMXXIV in numeri romani (e non solo! Si può scrivere anche utilizzando gli stessi simboli, ma con qualche operazione in più: (X / V) ^X ⨯ I ^M + M = (10 / 5) ^10 ⨯ 1 ^ 1000 + 1000 = 2024),
  • in Unicode corrisponde alla lettera jona ja dell'alfabeto N'Ko: ߨ ,
  • è il ventiduesimo numero tetraedrico. Ovvero, se si costruisce un tetraedro di 22 palline di lato, serviranno in tutto 2024 palline.


Alcune ricorrenze che cadono nel 2024:
  • 2⁵ = 32 anni fa, nel 1992, moriva Grace Murray Hopper, matematica statunitense, una pioniera della programmazione informatica;
  • 2⁶ = 64 anni fa, nel 1960, morivano John Henry Constantine Whitehead, matematico britannico,  Oswald Veblen, matematico statunitense, colui che dimostrò formalmente il teorema della curva di Jordan, e Eric Temple Bell, matematico scozzese;
  • 2⁷ = 128 anni fa, nel 1896, nascevano Wilhelm Ackermann, matematico tedesco, e Pavel Sergeevič Aleksandrov, matematico sovietico;
  • 2⁸ = 256 anni fa, nel 1768, nasceva Jean Baptiste Joseph Fourier, quello della serie e della trasformata di Fourier;
  • 2⁹ = 512 anni fa, nel 1512, nasceva Gerardo Mercatore, che inventò la proiezione di Mercatore, caratterizzata dal mantenere gli angoli corretti;
  • 100 anni fa, nel 1924, moriva Helge von Koch, colui che da il nome alla curva di Koch, un frattale.
Buon (X / V) ^X  ⨯ I ^M + M !